March 18, 2012

What Is The Endocannabinoid System?

March 18, 2012
can medical marijuana help treat liver disease

the endocannabinoid system cannabisThe Endocannabinoid System

I was once talking to a friend, and he was giving me the really simple breakdown about the endocannabinoid system. He said that essentially, your endocannabinoid system helps you react to stimulus. Ever notice that people who consume marijuana are calmer than most people? Ever notice how you consume marijuana and things don’t seem as stressful? That’s because the endocannabinoid system in your body is kicking in. For a much more scientific breakdown, I have included expert information below:

By Alan Shackelford, M.D. for Culture Magazine

The cannabis plant is native to almost all climate zones–from Siberia to southern Africa–and is now thought to exist in three varieties: cannabis sativa, cannabis indica and cannabis ruderalis. Each variety has distinct characteristics. Cannabis sativa can grow to be very tall and tree-like, while Cannabis indica is usually short and bushy. Ruderalis is generally spindly and short, and has largely been ignored in both practical use and as the object of scientific study, though with the increased interest in both medical and industrial uses of cannabis, this is changing.

Humans have used cannabis for thousands of years for a variety of purposes. Hemp fibers are thought to have been fashioned into rope, twine and cloth at least as long as 10,000 years ago and perhaps much longer, and were probably the source of the first paper made in China more than 2,000 years ago. Human interaction with cannabis is probably much older, however. Some scientists have even speculated that cannabis and humans as well as other animals have co-evolved, because all vertebrates, including mammals, birds, fish and reptiles, have receptors for and produce substances known as endocannabinoids that are similar to compounds found in the cannabis plant–hence their name. Discovered only in the late 1980s, the endocannabinoid system is one of a number of systems that help maintain balance, or homeostasis, in most body functions and systems. Because the endocannabinoid system is so vitally important, it has been the subject of thousands of research studies conducted around the world in recent years.

The endocannabinoid system’s role in human physiology is broad and multi-faceted. The central nervous system, the immune system, cardiovascular system, reproductive system, gastrointestinal and urinary tracts all contain cannabinoid receptors and are regulated by cannabinoids–with one important exception: the brainstem where, among other vital functions, respiration is controlled. This is why cannabis, unlike opiates, does not suppress breathing, even at high doses. Endocannabinoid production declines as people age, a process that may play an important role in the development of age-related and degenerative diseases such as atherosclerosis and cardiovascular disease, arthritis, osteoporosis and possibly a number of cancers as well as Alzheimer’s disease and Parkinson’s disease.

And so it would seem to be a natural conclusion that replacing declining endocannabinoid levels with outside sources of cannabinoids would be desirable. As it happens, the only source of cannabinoids outside the human body is the cannabis plant. It is little wonder then that cannabis has been used as a medicine for thousands of years or that, after decades of neglect and vilification, it is again assuming an important role in treating and possibly preventing a great many medical conditions. Stay tuned. The most exciting part of the story is yet to come.

Alan Shackelford, M.D., graduated from the University of Heidelberg School of Medicine and trained at major teaching hospitals of Harvard Medical School in internal medicine, nutritional medicine and hyperalimentation, and behavioral medicine. He is principle physician for Intermedical Consulting, LLC and Amarimed of Colorado, LLC and can be contacted at Amarimed.com.

By Dustin Sulak for NORML

As you read this review of the scientific literature regarding the therapeutic effects of cannabis and cannabinoids, one thing will become quickly evident: cannabis has a profound influence on the human body. This one herb and its variety of therapeutic compounds seem to affect every aspect of our bodies and minds. How is this possible?

In my integrative medicine clinic in central Maine, we treat over a thousand patients with a huge diversity of diseases and symptoms. In one day I might see cancer, Crohn’s disease, epilepsy, chronic pain, multiple sclerosis, insomnia, Tourette’s syndromeand eczema, just to name a few. All of these conditions have different causes, different physiologic states, and vastly different symptoms. The patients are old and young. Some are undergoing conventional therapy. Others are on a decidedly alternative path. Yet despite their differences, almost all of my patients would agree on one point: cannabis helps their condition.

As a physician, I am naturally wary of any medicine that purports to cure-all. Panaceas, snake-oil remedies, and expensive fads often come and go, with big claims but little scientific or clinical evidence to support their efficacy. As I explore the therapeutic potential of cannabis, however, I find no lack of evidence. In fact, I find an explosion of scientific research on the therapeutic potential of cannabis, more evidence than one can find on some of the most widely used therapies of conventional medicine.

At the time of writing, a PubMed search for scientific journal articles published in the last 20 years containing the word “cannabis” revealed 7,704 results. Add the word “cannabinoid,” and the results increase to 15,899 articles. That’s an average of more than two scientific publications per day over the last 20 years! These numbers not only illustrate the present scientific interest and financial investment in understanding more about cannabis and its components, but they also emphasize the need for high quality reviews and summaries such as the document you are about to read.

How can one herb help so many different conditions? How can it provide both palliative and curative actions? How can it be so safe while offering such powerful effects? The search to answer these questions has led scientists to the discovery of a previously unknown physiologic system, a central component of the health and healing of every human and almost every animal: the endocannabinoid system.

What Is The Endocannabinoid System?

The endogenous cannabinoid system, named after the plant that led to its discovery, is perhaps the most important physiologic system involved in establishing and maintaining human health. Endocannabinoids and their receptors are found throughout the body: in the brain, organs, connective tissues, glands, and immune cells. In each tissue, the cannabinoid system performs different tasks, but the goal is always the same: homeostasis, the maintenance of a stable internal environment despite fluctuations in the external environment.

Cannabinoids promote homeostasis at every level of biological life, from the sub-cellular, to the organism, and perhaps to the community and beyond. Here’s one example: autophagy, a process in which a cell sequesters part of its contents to be self-digested and recycled, is mediated by the cannabinoid system. While this process keeps normal cells alive, allowing them to maintain a balance between the synthesis, degradation, and subsequent recycling of cellular products, it has a deadly effect on malignant tumor cells, causing them to consume themselves in a programmed cellular suicide. The death of cancer cells, of course, promotes homeostasis and survival at the level of the entire organism.

Endocannabinoids and cannabinoids are also found at the intersection of the body’s various systems, allowing communication and coordination between different cell types. At the site of an injury, for example, cannabinoids can be found decreasing the release of activators and sensitizers from the injured tissue, stabilizing the nerve cell to prevent excessive firing, and calming nearby immune cells to prevent release of pro-inflammatory substances. Three different mechanisms of action on three different cell types for a single purpose: minimize the pain and damage caused by the injury.

The endocannabinoid system, with its complex actions in our immune system, nervous system, and all of the body’s organs, is literally a bridge between body and mind. By understanding this system we begin to see a mechanism that explains how states of consciousness can promote health or disease.

In addition to regulating our internal and cellular homeostasis, cannabinoids influence a person’s relationship with the external environment. Socially, the administration of cannabinoids clearly alters human behavior, often promoting sharing, humor, and creativity. By mediating neurogenesis, neuronal plasticity, and learning, cannabinoids may directly influence a person’s open-mindedness and ability to move beyond limiting patterns of thought and behavior from past situations. Reformatting these old patterns is an essential part of health in our quickly changing environment.

What Are Cannabinoid Receptors?

Sea squirts, tiny nematodes, and all vertebrate species share the endocannabinoid system as an essential part of life and adaptation to environmental changes. By comparing the genetics of cannabinoid receptors in different species, scientists estimate that the endocannabinoid system evolved in primitive animals over 600 million years ago.

While it may seem we know a lot about cannabinoids, the estimated twenty thousand scientific articles have just begun to shed light on the subject. Large gaps likely exist in our current understanding, and the complexity of interactions between various cannabinoids, cell types, systems and individual organisms challenges scientists to think about physiology and health in new ways. The following brief overview summarizes what we do know.

Cannabinoid receptors are present throughout the body, embedded in cell membranes, and are believed to be more numerous than any other receptor system. When cannabinoid receptors are stimulated, a variety of physiologic processes ensue. Researchers have identified two cannabinoid receptors: CB1, predominantly present in the nervous system, connective tissues, gonads, glands, and organs; and CB2, predominantly found in the immune system and its associated structures. Many tissues contain both CB1 and CB2 receptors, each linked to a different action. Researchers speculate there may be a third cannabinoid receptor waiting to be discovered.

Endocannabinoids are the substances our bodies naturally make to stimulate these receptors. The two most well understood of these molecules are called anandamide and 2-arachidonoylglycerol (2-AG). They are synthesized on-demand from cell membrane arachidonic acid derivatives, have a local effect and short half-life before being degraded by the enzymes fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL).

Phytocannabinoids are plant substances that stimulate cannabinoid receptors. Delta-9-tetrahydrocannabinol, or THC, is the most psychoactive and certainly the most famous of these substances, but other cannabinoids such as cannabidiol (CBD) and cannabinol (CBN) are gaining the interest of researchers due to a variety of healing properties. Most phytocannabinoids have been isolated from cannabis sativa, but other medical herbs, such as echinacea purpura, have been found to contain non-psychoactive cannabinoids as well.

Interestingly, the marijuana plant also uses THC and other cannabinoids to promote its own health and prevent disease. Cannabinoids have antioxidant properties that protect the leaves and flowering structures from ultraviolet radiation – cannabinoids neutralize the harmful free radicals generated by UV rays, protecting the cells. In humans, free radicals cause aging, cancer, and impaired healing. Antioxidants found in plants have long been promoted as natural supplements to prevent free radical harm.

Laboratories can also produce cannabinoids. Synthetic THC, marketed as dronabinol (Marinol), and nabilone (Cesamet), a THC analog, are both FDA approved drugs for the treatment of severe nausea and wasting syndrome. Some clinicians have found them helpful in the off-label treatment of chronic pain, migraine, and other serious conditions. Many other synthetic cannabinoids are used in animal research, and some have potency up to 600 times that of THC.

Cannabis, The Endocannabinoid System, And Good Health

As we continue to sort through the emerging science of cannabis and cannabinoids, one thing remains clear: a functional cannabinoid system is essential for health. From embryonic implantation on the wall of our mother’s uterus, to nursing and growth, to responding to injuries, endocannabinoids help us survive in a quickly changing and increasingly hostile environment. As I realized this, I began to wonder: can an individual enhance his/her cannabinoid system by taking supplemental cannabis? Beyond treating symptoms, beyond even curing disease, can cannabis help us prevent disease and promote health by stimulating an ancient system that is hard-wired into all of us?

I now believe the answer is yes. Research has shown that small doses of cannabinoids from marijuana can signal the body to make more endocannabinoids and build more cannabinoid receptors. This is why many first-time marijuana users don’t feel an effect, but by their second or third time using the herb they have built more cannabinoid receptors and are ready to respond. More receptors increase a person’s sensitivity to cannabinoids; smaller doses have larger effects, and the individual has an enhanced baseline of endocannabinoid activity. I believe that small, regular doses of marijuana might act as a tonic to our most central physiologic healing system.

Many physicians cringe at the thought of recommending a botanical substance, and are outright mortified by the idea of smoking a medicine. Our medical system is more comfortable with single, isolated substances that can be swallowed or injected. Unfortunately, this model significantly limits the therapeutic potential of cannabinoids.

Unlike synthetic derivatives, herbal marijuana may contain over one hundred different cannabinoids, including THC, which all work synergistically to produce better medical effects and less side effects than THC alone. While marijuana is safe and works well when smoked, many patients prefer to use a vaporizer or cannabis tincture. Scientific inquiry and patient testimonials both indicate that herbal marijuana has superior medical qualities to synthetic cannabinoids.

In 1902 Thomas Edison said, “There were never so many able, active minds at work on the problems of disease as now, and all their discoveries are tending toward the simple truth that you can’t improve on nature.” Cannabinoid research has proven this statement is still valid.

So, is it possible that medical marijuana could be the most useful remedy to treat the widest variety of human diseases and conditions, a component of preventative healthcare, and an adaptive support in our increasingly toxic, carcinogenic environment? Yes. This was well known to the indigenous medical systems of ancient India, China, and Tibet, and as you will find in this report, is becoming increasingly well known by Western science. Of course, we need more human-based research studying the effectiveness of marijuana, but the evidence base is already large and growing constantly, despite the DEA’s best efforts to discourage cannabis-related research.

Does your doctor understand the benefit of medical cannabis? Can he or she advise you in the proper indications, dosage, and route of administration? Likely not. Despite the two largest physician associations (American Medical Association and American College of Physicians) calling for more research, the Obama administration promising not to arrest patients protected under state medical cannabis laws, a 5,000 year history of safe therapeutic use, and a huge amount of published research, most doctors know little or nothing about medical cannabis.

This is changing, in part because the public is demanding it. People want safe, natural and inexpensive treatments that stimulate our bodies’ ability to self-heal and help our population improve its quality of life. Medical cannabis is one such solution. This summary is an excellent tool for spreading the knowledge and helping to educate patients and healthcare providers on the scientific evidence behind the medical use of cannabis and cannabinoids.

Study Helps Unravel Mysteries of Brain’s Endocannabinoid System

NIDA research could lead to better treatment for pain and marijuana addiction

New research funded by the National Institute on Drug Abuse (NIDA), part of the National Institutes of Health, has identified a new mechanism for the processing of endocannabinoids, natural brain compounds similar to THC, the active ingredient in marijuana. The results of this study, led by researchers from Stony Brook University, were published March 16 in the Proceedings of the National Academy of Sciences.

Endocannabinoids are known to play a role in numerous physiological processes including appetite, memory, and pain. Researchers had long suspected that endocannabinoids needed a specific transporter that would ferry them to the location where they are broken down. This study successfully identified a couple of previously known fatty acid binding proteins (FABPs) as capable of carrying the endocannabinoid anandamide (also known as AEA) from the cell membrane, through the cell interior, to the location where it is destroyed.

“This finding is important because it significantly expands the range of potential targets for developing medications that could help fight pain, addiction, and other disorders,” said NIDA Director Dr. Nora D. Volkow. “For example, the manipulation of the endocannabinoid system has the potential to provide sorely needed therapeutics for the management of severe pain that are devoid of the side effects of opiate analgesics.”

“Inhibiting FABPs could potentially raise the levels of AEA in the brain’s synapses,” said Dr. Dale Deutsch, lead author of the study. “Naturally occurring AEA levels have been shown to curb pain without the negative side effects, such as motor coordination problems, of molecules like THC that can also bind the cannabinoid receptor. So it’s advantageous to try and target AEA for therapeutic purpose.”

In addition to pain control, researchers are also examining manipulation of the endocannabinoid system for treating anxiety, obsessive-compulsive disorder, traumatic brain injury, and other substance abuse disorders.

Share:

Facebook
Twitter
Pinterest
Reddit
[js-disqus]
Recent & Related Posts
Recent & Related Posts